
Parameter Definition

mass of the stick, unknown

acceleration of gravity, (9.81 m/s )

height of the center of mass of the stick from the pivot (0.63 m)

height of the fixation point measured from the pivot (1.0 m)

moment of inertia of the stick with respect to the pivot, unknown

Variable Definition

angle of the stick measured with respect to vertical

horizontal position of the pivot (hand)

horizontal position of the fixation point

sensor noise (in the eyes)

noisy measurement of horizontal position of fixation point

input (acceleration of the hand/pivot)

Balancing a stick
The parameters of the system are:

m

g 2

L

L0

J

The variables of interest are:

θ

x

z

w

y

u

Taking a torque balance about the pivot and using a small-angle approximation, we obtain the
equation of motion:

J +θ̈ mL =ẍ mgLθ

We also assume the input is the hand acceleration, so

u = ẍ

The eye observes the lateral position at a height  above the pivot, which is given by (again
using small-angle approximation):

L0

z = x+ L θ0

However, our eyes aren't perfect, and there will be measurement noise. So the true signal used
by our controller is

y = z + w



Transfer function

Although we don't know , it must be some multiply of . For example, if the rod were a
point mass at , we would have . If we had a uniform rod with center of mass at 
(total length ), then we would have . Let's define 
from now on.
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Measuring parameters

We do not need to find  or  since our equation depends only on .J m (ω ,L,L , η)n 0

Note that the original unforced pendulum has equation . If the pendulum were
not inverted, then its equation would be . So  is indeed the natural frequency.
We can measure  directly, by simply suspending the rod from a string and timing the period,
and we find  seconds. The frequency is:

−θ̈ ω θ =n
2 0

+θ̈ ω θ =n
2 0 ωn

ωn

T = 1.8

ω =n ≈
T

2π
3.49 rad/sec

Recalling the definitinon , we know that  and we can measure 
 by balancing the rod to find the center of mass. Solving for , we find:
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η = =
ω Ln
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g
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(3.49 rad/s) (0.63 m)2

9.81 m/s2
1.28

So we now have a complete description of the equations of motion.



Analysis of poles and zeros

The transfer function from  to  has four poles: , where  rad/sec.
We can identify three cases for the zeros:
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if L > ηL ≈ 0.80

if L = ηL ≈ 0.80

if L < ηL ≈ 0.80

Drawing the root loci for these three cases, we can see that having imaginary zeros is favorable.
The case with a RHP zero seems particularly difficult the smaller  gets, because this means
the RHP zero is very close to the unstable pole, which will make it quite difficult to attract the
root locus to the left-half plane.

L0

Complementary sensitivity

We are interested in how the noise will be amplified. Let's call  the transfer function from  to
, so . If the controller is , then we have , where  is the

reference. In our case, , so we have . Substituting into above and solving for 
, we find:

G U

Y Y = GU +W K U = K(R− Y ) R

R = 0 U = −KY

Y

Y = W
1 +GK

1

The signal  is what the controller sees, but it's not the true error, since it includes sensor
noise. The true error is . We find this to be:

R− Y

E = R− Z

E = R− Z = R− Y +W = 0 − W +
1 +GK

1
W = W

T

(
1 +GK

GK )

The transfer function  is our familiar closed-loop map. It's also the transfer function from
sensor noise to true error. It also has the name complementary sensitivity function.

T

Fundamental limits

We don't know what  is; it's the human body and it's complicated. However, there are
fundamental limits to controller performance, and these limits cannot be overcome. These are
essentially laws of nature, like conservation of energy, or the laws of thermodynamics. We will
learn about some of these limits now.

K

Ideally, we would want  to be small for all , since this would mean that every
frequency of noise is weakly amplified and does not appear prominently in the error. But is it
possible to make it arbitrarily small? Let's call  the maximum magnitude of . So we're
defining:

∣T (jω)∣ ω

MT T



M :T = ∣T (jω)∣
ω
max

We will make use of a result called the maximum modulus theorem. It says that if  is any
transfer function that is bounded in the entire right-half plane (including the imaginary axis),
then its maximum magnitude must occur somewhere on the imaginary axis. Here, "bounded"
means that we can't make the magnitude arbitrarily large. In particular, it means that  must
be stable and can't have any poles on the imaginary axis either. If this were not the case, then
picking  close to the pole in the right-half plane would make the magnitude blow up. This also
means  should be proper, so that as  we should have .

H(s)

H

s

H Re(s) → ∞ H(s) → 0

Since  should stabilize our system,  must be stable. So we can apply the maximum modulus
theorem to . Note also that  has an unstable pole at . We're assuming that 
cannot contain a RHP zero at  (remember: it's dangerous to try and cancel unstable poles
using RHP zeros!). Therefore, . Applying the maximum modulus theorem, we have:
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Here, "RHP" denotes the entire right-half plane including the boundary: .
So no matter what we do, the maximum noise amplification will be at least 1 (this is guaranteed
to occur at ). It is impossible to attain attenuation at all frequencies, no matter what
controller is used. This isn't the end of the story though...

{s ∈ C ∣ Re(s) ≥ 0}

s = ωn

Time delay

The human body has a natural time delay in vision + processing + motor control. This loop has
a delay of about 300 milliseconds (0.3 seconds) in most humans. This has consequences for
noise amplification, as we will now see.

Assuming our controller also carries a delay of  seconds, that means we can multiply 
by  and it will remain bounded in the RHP. An ordinary (non-delayed) transfer function could
not tolerate this, as it would blow up as  because exponentials grow faster than any
polynomial. Also, exponentials always have magnitude 1. So using the maximum modulus
theorem, we have:
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For our system,  and . Therefore, we have:ω =n 3.49 τ = 0.3

M ≥T e ≈ω τn 2.85 ≈ 9 dB

So in the presence of delay, the noise amplification is at least 9 dB, and this is unavoidable!

Right-half plane (RHP) zeros

We saw above that if , we will have a RHP zero. This also has consequences! If
there is a RHP (real) zero at , then  has a factor . Consider the unstable filter
with transfer function

L <0 ηL ≈ 0.8
s = z G (s− z)

+



F (s) =
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First, observe that  for all . This follows because:∣F (jω)∣ = 1 ω
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Next, notice that even though  is unstable,  is stable, because  is a zero of , so it gets
canceled by multiplication with . Therefore, we can apply maximum modulus again and write:

F FG z G

F

MT = ∣T (jω)∣ = ∣F (jω)T (jω)∣
ω
max

ω
max

= ∣F (s)T (s)∣ ≥ ∣F (ω )T (ω )∣ =
s∈RHP
max n n

∣∣
∣∣
∣

ω − zn

ω + zn

∣∣
∣∣
∣

The RHP zeros is located at . Substituting, we obtain:z =
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Recall . Let's assume we fix our gaze on the midpoint of the stick. Then ,
and
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4.16 ≈ 12.4 dB

In fact, we still have the delay, so the total amplification is , or 
.

2.85 × 4.16 = 11.86 9 +
12.4 = 21.5 dB

Shortening the stick

If we shorten the stick, say to half the length, then let's assume  doesn't change, and  and 
each get cut in half. Since , the new natural frequency will be 

. This will cause the noise amplification due to delay to become:
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4.4 ≈ 12.8 dB

So shortening the stick incurs an extra 4 dB of amplification, but lowering our gaze to the half-
point incurs an extra 12.4 dB, which is much worse!

Bandwidth considerations

Not only is it impossible to avoid noise amplification at certain frequencies, it is also impossible
to avoid a high closed-loop bandwidth. To reason about this, let's suppose we would like to



achieve a closed-loop transfer function that is at least as good as a first-order low-pass filter. In
other words,
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Here,  is the corner frequency for our desired closed-loop map and  is the maximum
amplification. Let's apply maximum modulus to the function  and substitute the
unstable pole as we did before:
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Rearranging, we obtain:

(M −T 1)ω ≥c ωn

We want  to be small; this means the closed-loop bandwidth is small, which means we
reject a lot of the noise, particularly at high frequencies.
We also want  to be small (recall it has to be at least 1), because this means that the
noise frequencies that are most amplified are not amplified that much.

ωc

MT

The inequality above tells us that  and  can't both be small. Moreover, the smaller we
make , the larger  will be, and the harder it becomes to satisfy our design requirement. This
is a fundamental trade-off in controller design. It's also sometimes called the waterbed effect
(you can push some frequencies down, but others will pop up).

ωc MT

L ωn

We can also combine all aforementioned effects together. If  due to a RHP zero
and/or a time delay, then applying a similar argument to above, we obtain

M ≥T M0

(M −T M )ω ≥0 c M ω0 n

Misc.

Control gets virtually impossible if one eye is closed, because we lose depth perception and
we can no longer estimate the distance of the rod in the fore-aft direction.
Adding more weight to the tip makes control easier, because this moves the center of mass
higher (increases ). Note that the total mass makes no difference, only the mass
distribution is important.
Adding sensor noise by dimming the lights in the room or standing on one leg also
increases difficulty.
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